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Abstract.
An end-to-end rnodelling  program for an astrometric  telescope employing a Ronclli ruling has

been developed. The program models the aberrated  images formed anywhere in the field-of-view.
It then determines apparent centroids  by simulating the motion of a Ronchi ruling across the
field. Photo-electran  statistic+ are included. A 6 term plate-constant model is used to determine
the apparent motion of a target star within a reference frame as the object is re-observed  through
both ideal and perturbed optics. The modelling code is accurate at the sub-micrearcsecond  level.
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1. Introduction

Ronchi rulings have been successfully employed in ground-based astrometric pro-
gratns  by several groups (Gatewood  1987, Ruffington  1990). Stellar positions are
measured by sliding the ruling across the image plane, repeatedly eclipsing the im-
ages of a target star and several reference stars. The number  of lines between stars
gives the approximate separation (in one dimension), while the phase difference
between the periodic signals provides high precision.

On the ground, random differential motions caused by atmospheric turbulence
have limited astrometric precision to about one rnilli-arcseconcl.  Improvements will
come with larger telescopes located at superior sites. Shao and Colavita (1992)
predict that with a 10 meter telescope located at hfauna Kea, one can achieve
sub-100 microarcsecond precision.

Current technology for the manufacture of Ronchi  rulings should allow at least
an order of magnitude improvement beyond 100 ]nicroarcseconds.  To realize nlicro-
arcsecond precision, it will be necessary to launch an orbiting 1.5 m class telescope.
A mission to do that called the Astrornetric Imaging Telescope (All’) has been
proposed, and is described elsewhere in these proceedings (Pravdo  et al, 1993).

There are several important differences between ground- and space-basecl  sys-
tems. On the ground, atmospheric turbulence can be counted on to smooth images
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to arcsolution  well below the cliffraction limit. Ground-based algorithms for deter-
mining the position of the star depend upon both image smoothness (no sidelobes)
and random image motion (Gatewood 1987, Buftlrrgton 1990) . In space, images
are diffraction limited and stable. The signal passed by the Ronchi  ruling may have
local minima due to diffraction rings, while aberrated images are not smoothed by
atmospheric blurring.

The purpose of this paper is to describe the end-to-end modelling  of a space-
based astrometric telescope employing a Ronchi ruling as the metric. Our mod-
elling  codes function at the sub-microarcsecond  level, and the algorithms are robust
enough to allow for reasonable telescope perturbations. We begin this paper with
the mathematical framework that describes the functionality of the ruling and noise
characteristics of the detected signal. We then detail the implementation of a com-
puter based end-to-end model as well as the plate constant model that is used to
determine the astrometric precision of a field of stars. Finally, we present results of
our modelling,  including optical tolerancing  of AIT and required integration times
for several target stars.

2. Optical model

The principle components of a Ronchi ruling based astrometric system are the
telescope, ruling, focal plane  apertures, and detectors. The telescope, described
below, should have low distortion, and a field-of-view sufficient for ol)serving several
reference stars surrounding the target star. lihe ruling is placed directly in the focal
plane with no intervening optics. Ilel]incl the ruling are several movable apertures
wi~h fiber optics that carry starlight to the detectors. Each aperture collects the
light from one star, and each photon-counting dctcrtor sees a periodic signal as the
ruling is drawn across the field-of-view. Starlight is incident on the focal plane with
a distribution given by I(x, y). ‘1’he Ronchi ruling is a periodic function given by
Ii’(x – zd), where v is the velocity of the ruling and t is a relative time coordinate.
The ruling is assumed  to extend illfinit,ely in tile y direction, so tliat tllc ]Jower
transmitted beyond the focal plane is given by the convolution of 1 with II?:

C.3w

P(t) = // I(X1 y)li(x – vf) (f* dy . (1)
-m -m

The power reaching the detector, Pd, is the component of }’ that passes throug]l
the focal plane aperture and is transmitted by the fibers.

The detected signal is given by

N

S(t)  = ~6(t – ti) , (2)
i=l

wllcre ti is the arrival time of the itll  photon. g’hc probability of detecting a ]J1loto-
electron at a given time follows l’oisson  stal istics, witli a mean rate {ietcrtnined  by
the instantaneous power I’d(t).

l’he  ruling serves as a spatial filter of tllc incident starlight. III the Fourier
domain, one can see that all of the intrinsic information of the detected light is
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localized to the first few Ronchi ruling harmonics.
detected signal is

N

3($)  = ~ exp –2Zjfti  .
i=l

3

The Fourier transform of the

(3)

After averaging over positional and temporal statistics, the mean value is

(4)

where N is the total number of photons collected, I is now taken to be the line
spread function l(x) = ~ I(z, y) dy, and tilde over a symbol is used to indicate the
Fourier transformed quantity. z is expressed as a temporal quantity via t = x/v.

Equation 4 demonstrates several important characteristics of detection with a
Ronchi  ruling. First, since the Fourier transform of a periodic function is a series of
delta functions (the harmonics), all of the positional information must be derived
from the harmonics. Since the true centroid is uniquely given by the slope of ~
at f = O, the Ronchi  ruling can not determine the true centroid unless it has an
infinite period. (Thus, the harmonics sample ~ infinitely close to the origin). Second,
it is evident that a square-wave ruling is better than a sinusoidal ruling because
the amplitude of R at the first harmonic is higher by 4/7r for a square wave, and
the square wave provides additional harmonics. Third, one can see that beyond the
maximum spatial frequency passed by ~, there is no information. Finally, higher
harmonics are attenuated by ~. The last two points demonstrate the importance of
diffraction limited imaging, for aberrations reduce the amplitude of ~.

It can be shown (Goodman and Belsher 1976) that the spectral density of the
detected signal is given by

“’(f)’2’=N+(Nwl)2
so that one is left with the resulting

d = (l~(f)l’)  - I FXf)) 12
=N.

, (5)

white  noise variance

(6)

The characteristic white noise spectrum is used below in our centroid  estimator.
Finally, we show that for a 50’?ZO duty cycle, the covariance  of the harmonics is

zero. It can be shown that the covariance of the noise is given by

_  ~(Af)fi(A~)
—

I(o)h(o) “
(7)

For a 50% duty cycle, only the odd harmonics exist. For a fundamental frequency
of f~, the A f between harmonics is 2ff. But @2jf)  = O, so that there is no
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Fig. 1. Block diacyarn of end-to-end modelling process.

correlation. If, however, the duty  cycle is changed, even harmonics appear. In that
case, the correlation between adjacent harmonics is fi(ff ), which approaches 2/~.
Because of the large correlation between adjacent harnlonics,  there is little to be
gained by using a duty cycle other than 50Y0.

3. End-to-end model

Our model consists of several star fields selected from a list of nearby stars, a ray
trace/diffraction program, a model of the Ronchi  ruling, a photon noise generator,
and an astrometric analysis program. Figure 1 shows a schematic of the end-to-end
modelling process. All software is executed on a Sun Spare 2 workstation.

3 . 1 .  IMAGING  corI~

End-to-end modelling  begins with a high-precision optical ray-trace and diffraction
program called the Controlled Optics .Modelling Package (COhlP) (Redding  an[i
Breckinridge  1991).

COMP’S  ray-trace has been verified against the commercially available optical
program CODE V (Optical Research Associates 1993). For AIT, we have shown
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that COMP’S numerical precision is 20 nano-arcseconds  for a bundle of 2600 rays
traced through the system at field angles up to 10 arcminutes. The accuracy of the
ray trace in terms of the centroid  of the ray bundle is estimated by using larger and
larger numbers of rays until the centroid no longer shifts. The interesting result
of this study is that a small number of rays (e.g. 2000) gives accurate relative
centroids  at the sub-micro-arcsecond  level, while the absolute centroids differ only
by a multiplicative constant. In other words, by using a reasonably small number
of rays, the system magnification is slightly off (by a fraction of a percent), but the
quadratic and higher order distortion terms are accurately determined.

The diffraction calculation begins by tracing the rays backwards to the exit
pupil of the system. A spherical phase term, with radius centered on the chief ray
position in the image plane, is removed from the optical path of each ray. The
remaining optical path defines the phase of the electric field at each grid point. The
distribution is transformed by FFT to the image plane, where it is squared to yield
the diffraction image. Typically, a 512 x 512 array is employed. Diffraction images
are accurate even in the presence of large aberrations in off-axis images.

We find that diffraction centroids follow closely the ray centroids at the 30 pas
level (after removal of a small linear magnification term). In theory, an image calcu-
lated by Fourier Transform of the exit pupil should have exactly the same centroid
as the ray distribution (Lawrence et al. 1991). We believe that computational ap-
proximations account for this difference, which in any case is accommodated in the
end-to-end model; the quadratic plate constant model clcscribed  below accounts for
this effect.

in Figure  2, wc s}low IIow ~l]e chief ray, ray cc[llroid,  and diffraction celltroid
compare across Alrl”s 16 arcrllillule  field-of-view

‘1’Ile  Ronclii Ituling  (Jilt) is rllodellml  as a otl[’-(lil[lcllsic~]lal  o]le-zero funcliotl  WIIOSC
period and length are both powers of 2. In this way, the harmonics are integers
in the discrete frequency domail).  A 50% dl]ty cycle is ltsrd,  I)llt other  duty  cycles
could easily be simlllat,rxi.

As not,cd  above, the true  image centroid is givcrl by tl]e derivative of the i]nage
FT evaluated at the spatial frecluency  origin. For a shifted, but otherwise symnlet-
ric image, phase is directly proportional to spatial frequency. Any spatial frequency
(i.e. any ruling harmonic) can be used to estimate the centroid.  Ilowever,  for asyn]-
metric images, such as those containing coma, the centroid is still given by the
phase slope at the origin, but the phase is no longer linear. (See, e.g., figs.  9 and
10 of Lawrence ct rrl. 1991). Spatial frequency san]ples  made away from the ori-
gin contain both ccntroid  and asyrn]~lcl  r-y in forllmtion. Since the RR is ],eriodic,
it passes only discrete s])atial  frequencies. ‘1’herr is 1]0 dirrcl way (Ilsing a lillcar
estimator) to determine tile phase slope at llle origin. Non-linear cstin]ators,  such
as a matched filter, could I)e used, bllt  they assume solne a priori  !iIlowledge  of the
optical aberratior]s  and arc sensitive to n]isaligllrnrnts  or {Icforrnatjion  of the optics.

Wc have chosen to implcnnent  a simple linear estilnator in which the phase slope
is estimated as the weighted least-squarm  line passing through tlIe first several
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AIT Distortion: Unperturbed System
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Fig. 2. Distortion in the Astrometric  Imaging Telescope. A linear term (system magnifi-
cation) has been removed.

ruling harmonics. Weighting is determined by the amplitude of the modulation. In
practice, this is implemented by integrating the image in one dimension, computing
its FFT, then multiplying by the FFT of the ruling. A least-squares routine is used
to determine a line passing through the origin and the first sevcra[ harmonics.

The noise of the centroid estimate can be derived from eqs. 6 and 7, where it
is evident that the noise in the frequency domain is white and uncorrelated.  At a
given harmonic, the signal-to-noise ratio of the amplitude is given by

SNR4 = fi~(j)fi(j)
I(0)R(O)  ‘

(8)

where N is the number of detected photoelectrons.
In the approximation SNR >> 1, the phase noise (in radians) is then given by

UP =  l/SNR~ . (9)

This approximation is always valid for integration times of several seconds or more
on any of the 20 brightest stars in the field (as long as the ruling is neither too
wide nor too narrow). The ph,ase noise is used by the Ronchi  ruling least squares
routine to obtain a formal error on the phase slope. The phase slope and error are
then converted to centroid position and centroid error uC. When a single harmonic
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is used, the centroid error is

(lo)

where T is the period of the ruling. For wide rulings, where higher harmonics
are still well below the cutoff frequency of f, additional harmonics decrease UC by
approximately fi, where H is the number of harmonics used. For narrow rulings,
only the first harmonic makes a significant contribution.

As shown below, the optimum spacing in terms of the SNR is too sensitive to
aberrations. Because of this sensitivity, we are forced to use a relatively wide ruling,
increasing integration times above the theoretical limit.

3.3. ASTROMETRIC  M O D E L

AIT performs relative astrornetry, measuring the motion of a target star relative to
a background frame. Over its lifetime, it will measure each target star several times
per year. With each subsequent observation, the pointing, roll, focus, focal plane
position, and optical components will change at some small level. The reference
stars allow one to make an afiine transformation between frames. We have found
that a 3 term linear model  is too sensitive to aberrations to be useful, Instead we
use a 6 term quadratic model given hy

where x and y are the coordinates of a star in the original fra[nc, and 7’ is tile
coordinate in subsequent, fralnm.  y‘ is nle:isured in separate ol~servat, ions, A least
squares routine is used to perform the afflnc trallsfornlatio]l.  Itach star is }veightcd
according to its brightness al]d image quality. At Ic<ast 6 rcfercncc stars arc required
for this model. Error propagation usilig this l]lo<lel has hccn {Iiscusscd I)y l;ichorn
and Williams (1963).

The 6 term rnodcl is more liglit-c~cicnt than a third  order n)ode] tl)at could
a c c o u n t< for the staridard clistortio]i tcrrn. We have foltnd that tlie desigllcd third
order distortion (about ~100  micro-a rcseconds)  is satisfactorily rcduccd  by ttic
quadratic model; target star errors are IJC1OW 1 rl]icro-arcsecond  assumi]lg  that the
tclcscopc  is repointed  to within 10 arcscconds  of the origilial  frame.

4. Optical design

The ideal astrometric telcscopc  has zero distortion and forms perfectly syrnrnctric
ilnages  across the field-of-view. No two-mirror design call achieve this,  hilt  a special
class of Ritchcy-Chreticn  designs can eliminate third order distortion, spherical
aberr.atio]i,  and colna. ‘Iihc equations for dcter]ninil)g  this [Iesign  ll:ivc bmn given
by Korsch ( 1!390).  Tllc AlrI’ design is driven hy additiorlal  factors, such as tlic desire
for a small secondary mirror to rcducc sidelobcs  for arlother  instrulncrlt,  constrained
overall le~igth, a]ld the nce(l for a large collccti]lg arc:i (1’ravdo ct al. 1993). The
current design has a 1.5 ni primary, 44 cm secondary, and a 22.6 m eflcctivc focal
length.
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5. Telescope tolerances

As designed, AIT’s ultimate astrometric limit is better than 1(I micro-arcseconds.
Motions of the secondary mirror, mirror contamination, mirror deformation, and
background stars all affect the delicately balanced image symmetry and induce
astrometric errors,

To test our sensitivity to these perturbations, we generate two observations: a
first observation, with the target star centered in the field, and all optics operat-
ing perfectly; and a second observation where a part or parts of the system are
perturbed. In the second observation, we assume a pointing error of 2 arcseconds
and roll error of 1°. The system is perturbed by modifying the COMP  telescope
prescription before tracing rays.

Figure 3 shows the field distortion when the secondary is recentered by 100
microns perpendicular to the telescope axis. The true ceutroids are well behaved,
despite significant aberrations. The Ronchi  ruling “centroid,” however, now has
2 milli-arcseconds  of error. This is due to the non-symmetric interaction of the
field-independent coma with design astigmatism. A 100 micron decenter causes less
that 0.01 waves r.m.s.  of aberration, an indication of the sensitivity of the ruling
to misalignments. To achieve 10 micm-arcsecond  precision (assuming no in-flight
calibration), decentcr of the secondary must be maintained to 10 microns, w}]ile tilt
must be maintained to 7 arcseconds.

Fortunately, astrometric precision is highly insensitive to “breathing” of the
rnctering  truss. When  the truss expands, the primary-secondary spacing changes,
but image symmetry is not affected. The plate-scale model accounts for the focal
plane scale change. Seconclary motions of up to + 0.5 mtn are per[nitted.

We have also found that the end-to-end model  is rather insensitive to the conic
constants of both the primary and secondary ~nirrors.  For this simulation, tile conies
are assumed to have an error in both the initial and final observations. We  find that

the conies can be in error by tnore  than Ak >0.01 on both mirrors.
The Ronchi ruling used for these sin]ulations  has a period of 89 ~l]n correspond-

ing to 0.8 arcseconcls in the focal plane. This is 7 titncs  larger than the optimal (for
integration time) ruling, increasing integration time  by a factor of 7.

To improve tolcrancing  requirenm:)ts,  in-flight calibration can yield infortnation
on focal-plane distortion. The general idea of the scheme is to observe a set of
three or more bright stars separated by w 1 arcminute at several points in the
field. The apparent star separations are used to estimate the field dependence of
the distortion. Tolerance requirements are relaxed by a factor of x 5.

6. Integration times for several target stars

A set of 10 sample fields w,as chosen from a list of nearby stars. The set represents a
wide range of magnitudes of both target and reference stars. The brightest 25 stars
within an 8 arcrninute  radius of the target star arc used to define the reference
frame. We used tl]e first 3 harmonics to estimate the ccntroid  of each star. The
Table gives the integration time required to reduce the target star positional error
to 10 micro-arcseconds. Columns 3 and 4 indicate the average number of dctecteci



Spac&Bcmed  Astrometry 9

1000

500

~c o

~ -w
~
o
5 -1OOO
E

.1500

-2000

Distortion with 100 micron seconda~ mirror decenter

.10 .5 0 5 10
arcminutes

+89 micron Ronchi ruling -+- Diffraction centroid

- Ray bundle Centroid -= Chief ray
Fig. 3. Distortion when the secondary mirror is displaced by 100 microns perpendicular
to the optical axis. Chief ray, ray centroid, and diffraction distortion remain well behaved.
The Ronchi  ruling, however, is sensitive to the field-independent coma of the recentered
system.

photons for the target star and reference frame, respectively. These numbers are
based upon instrumental throughput of 2% which includes opticai  losses in the
teiescope,  ruling and fiber optics, and the quantum efficiency of the detectors.

The target stars are divided into two groups. In the upper group, the target
star is fainter than the reference frame. lU the second group, the reference frame
limits integration time. One can draw the generai  conclusion that brighter reference
frames are better, but that is not always the case. For example, SAO 082706 requires
a significantly longer integration than SAO 062377. The discrepancy is due to the
light distribution in the reference frame.

7 .  Coxlclt]sioxl

The model described herein demonstrates that a Ronchi ruling space-based exper-
iment such as AIT can achieve astrometric measurement accuracy of 10 micro-
arcseconds.  Most importantly, this is not an idealized model. Even in the presence
of pointing errors and optical aberrations,, the experimental design is sufficiently
robust to perform at the design accuracy.



10 S. SHAKLANET AL.

TABLE I
Integration times for 10 micro-arcsecond astrometry

Star m” Targ. Phot/s x 103 Ref. Phot/s x 103 Req’d T(s)
Ross 128 11.10 48 3534 7992
SAO 122963 9.54 210 3592 1303
SAO 065525 8.10 764 1326 812
SAO 082706 4.26 25309 786 5184
SAO 062377 7.49 1328 495 3387
SAO 157844 4.74 17509 1687 2143
SAO 080104 5.14 12114 1788 918
SAO 177866 4.93 14564 1515 756
SAO 062738 6.45 3336 1637 645
SAO 200163 4.62 19199 3338 317
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